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ABSTRACT

When modelling circuits one has often to deal with equations con-
taining both a linear and an exponential part. If only a single ex-
ponential term is present or predominant, exact or approximate
closed-form solutions can be found in terms of the Lambert W
function. In this paper, we propose reformulating such expressions
in terms of the Wright Omega function when specific conditions
are met that are customary in practical cases of interest. This elimi-
nates the need to compute an exponential term at audio rate. More-
over, we propose simple and real-time suitable approximations of
the Omega function. We apply our approach to a static and a dy-
namic nonlinear system, obtaining digital models that have high
accuracy, low computational cost, and are stable in all conditions,
making the proposed method suitable for virtual analog modelling
of circuits containing semiconductor devices.

1. INTRODUCTION

Typically, circuits are modelled as systems of differential equa-
tions which often contain nonlinearities [1, 2]. This is true of
both state-space methods [3, 4] and wave digital filters [5, 6, 7].
Because of the exponential relation in the Shockley model of p-n
junctions in semiconductors [8], which is also used in the Ebers-
Moll model of bipolar junction transistors (BJT) [9], often one has
to deal with equations containing both a linear and an exponen-
tial part. These equations may be solved numerically by iterative
methods. However, these approaches often result in high compu-
tational load and can be problematic in terms of stability and/or
accuracy [10, 11].

When only a single exponential term is present or predomi-
nant, it is possible to utilize the Lambert W function [12, 13, 14]
to analytically solve these equations [15, 16, 17, 18, 19, 20, 21].
When applicable, such an approach brings remarkable advantages.
In the context of circuit simulation, it is often the case that the so-
lution only involves the main branch of the W function while its
argument contains a time-varying exponential term. Various ap-
proximations [22, 23, 24, 25, 26] as well as algorithms [27, 28]
have been proposed in the literature for the computation of the W
function but, to the best of authors’ knowledge, evaluation meth-
ods have always been preferred, in the context of real-time music
DSP, that trade lower accuracy for higher performance [16, 17, 18,
19, 20].
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In this paper, we propose to reformulate expressions involv-
ing the main branch of the Lambert W function in terms of the
Wright Omega function [29] in the context of virtual analog mod-
elling, which eliminates the need to compute the exponential term
usually found in the argument. Moreover, we propose simple ap-
proximations that can be used when algorithms already available
for a precise evaluation of the Omega function (e.g., [30, 31]) are
too demanding from a computational standpoint.

The reminder of the paper is structured as follows. Section 2
describes both the Lambert W and Wright Omega functions. Sec-
tion 3 presents four approximations of the Wright Omega function.
Section 4 reports the application of the proposed approach for two
circuits, whereas Section 5 concludes the paper.

2. THE LAMBERT W AND WRIGHT OMEGA
FUNCTIONS

In this section we introduce very briefly the Lambert W and Wright
Omega functions. Since time-domain circuit simulation most often
only involves real quantities, we will limit ourselves to the R →
R case, that is the argument is real and not less than − 1

e
for the

Lambert W function and just real for the Wright Omega function.

2.1. The Lambert W function

The Lambert W function is a non-injective function, with two
branches in the R→ R case, which is defined as the inverse func-
tion of

f(x) = xex, (1)

where ex is the exponential function and x ≥ − 1
e

. This can be
expressed as

x = f−1 (xex) = W (xex) . (2)

The defining equation for the W function can be derived by substi-
tuting x0 = xex into equation 2,

x0 = W (x0)eW (x0), (3)

for any x0 ≥ − 1
e

.
W (x) is two-valued for x ∈

[
− 1

e
, 0
)
, therefore we will re-

fer to the main branch (W (x) ≥ −1) as W0(x) and to the other
branch (W (x) ≤ −1) as W−1(x).

Now we can express the solution of equation

eax+b = cx+ d, (4)

as

x = −
W
(
−a

c
eb−a d

c

)
a

− d

c
, (5)
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with a and c not null. In particular, if a and c have the same sign,
the argument of W () is negative and there are either two (possi-
bly coincident) or no solutions, otherwise the argument is positive,
there is one solution, and W (x) = W0(x).

In circuit modelling, often a and c have opposite sign and are
either constants or control-rate expressions, while b or d contain
audio-rate components [17, 18, 19, 20, 21]. Therefore, under the
previous formulation, not only one needs to computeW (), but also
the exponential in its argument. In these cases, it is however still
possible to more conveniently reformulate the previous expression
as

x = −
W0

(
eb−a d

c
+log(− a

c
)
)

a
− d

c
. (6)

2.2. The Wright Omega function

The Wright Omega function is defined in terms of the Lambert W
function as

ω(x) = W0(ex), (7)

which can obviously be used to express equation 6 as

x = −
ω
(
b− a d

c
+ log(−a

c
)
)

a
− d

c
. (8)

In practice the logarithm is typically a constant or a control-
rate expression and ω() is the only transcendental function to be
computed at audio-rate.

3. APPROXIMATIONS AND COMPUTATION

High-precision algorithms have been proposed to compute ω()
[30, 31], yet in the context of real-time music DSP it is usually
preferable to trade some accuracy for higher computational effi-
ciency. Indeed, some approximations have been already proposed
in [16, 18], even if ω() was not explicitly mentioned. In this sec-
tion we propose four approximations with different degrees of ac-
curacy and complexity. Moreover, since two of these approxima-
tions presuppose fast computation of logarithm and exponential
functions, we also discuss two commonly used approaches for ap-
proximating them with a focus on the problem at hand, in case
the standard routines supplied for the target platform are not suffi-
ciently efficient.

3.1. Approximations of ω(x)

Several approximations of increasing computational cost are pro-
posed hereby. The plot of ω(x), in Figure 1(a), suggests that a
first, rough approximation can be

ω(x) ≈ ω1(x) = max(0, x). (9)

One could use a cubic spline to smooth the function around 0
as

ω(x) ≈ ω2(x) =


0 for x ≤ x1,
αx3 + βx2 + γx+ ζ for x1 < x < x2,

x for x ≥ x2.
(10)

It is sufficient to set the conditions of continuity C1 to univocally
determine the parameters α, β, γ, ζ from x1 and x2. Optimzing

these last two variables by the least squares method to minimize
the absolute error in the range [−10, 10] leads to

x1 = −3.684303659906469,

x2 = 1.972967391708859,

α = 9.451797158780131 · 10−3,

β = 1.126446405111627 · 10−1,

γ = 4.451353886588814 · 10−1,

ζ = 5.836596684310648 · 10−1.

Such an approximation is non optimal for x ≥ x2. Since
W (x)eW (x) = x, then ω(x)eω(x) = ex, or otherwise ω(x) =
x − log(ω(x)). This last relation can be used as a successive ap-
proximation method (i.e., ωn = x − log(ωn−1)) for x ≥ 1 (the
same approach is used in [17]). Applying it to improve the accu-
racy in the range of interest gives

ω(x) ≈ ω3(x) =


0 for x ≤ x1,
αx3 + βx2 + γx+ ζ for x1 < x < x2,

x− log(x) for x ≥ x2.
(11)

Again, α, β, γ, ζ are univocally determined from x1 and x2 if C1

continuity is imposed. This time we also take into account that fast
approximations for log(x) exist which are exact for x = 2y with
y ∈ Z, hence we also ensure that x2 is a power of 2. Reiterating
the optimization process, one gets

x1 = −3.341459552768620,

x2 = 8,

α = −1.314293149877800 · 10−3,

β = 4.775931364975583 · 10−2,

γ = 3.631952663804445 · 10−1,

ζ = 6.313183464296682 · 10−1.

To further improve the accuracy of such approximation, a Newton-
Raphson iteration can be applied

ω4(x) = ω3(x)− ω3(x)− ex−ω3(x)

ω3(x) + 1
, (12)

even if an approximation is used for the exponential term.
Figure 1(a) shows a plot of the ω(x) function along the four

proposed approximations, while Figure 1(b) shows the distribution
of the absolute errors for each of them.

3.2. Approximation of log(x)

The logarithm function can be efficiently approximated by exploit-
ing the IEEE754 representation of floating point numbers [32].
The memory representation of any such number is functionally
equivalent to

x = S2E(1 +M), (13)

where S is either −1 or +1, E ∈ Z is called the exponent, and
M ∈ [0, 1) is the mantissa.

In our case we can safely assume that S = +1, and by using
basic properties of logarithms

log(x) =
1

log2(e)
(E + log2(1 +M)) . (14)
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Figure 1: Approximations of the Omega function (a) and their ab-
solute errors (b).

E can be easily extracted as an integer from the actual floating
point representation of x by means of a bitshift and an integer sum,
and can be then converted to floating point representation by rou-
tines that are usually hardware-provided. Similarly, 1 +M can be
quickly obtained from x by setting the exponent to 0. Then, 1

log2(e)

is a constant that should just be precomputed and multiplied for the
change of base.

Since 1 ≤ 1+M < 2, we have effectively narrowed the prob-
lem to the computation of log2(x) in this range. We can finally use
a cubic spline and impose C1 continuity on the extremes, thus ob-
taining

log2(x) ≈ αx3 + βx2 + γx+ ζ, (15)

with

α = 0.1640425613334452,

β = −1.098865286222744,

γ = 3.148297929334117,

ζ = −2.213475204444817.

3.3. Approximation of ex

A similar approach can be employed to approximate the exponen-
tial function. First, it is possible to express

ex = 2byc2y−byc (16)

where y = 1
log(2)

x can be computed just by a multiplication with

a precomputed constant. 2byc is also easily obtained in floating

point format by converting y to integer format (usually through
fast hardware-implemented routines) and ensuring down rounding
is used, then using logic and integer operations so that S = 1,
E = byc, and M = 0.

Since 0 ≤ y − byc < 1, we have again narrowed the problem
to the computation of 2x in this range. Now y − byc is obtained
by converting byc to the floating point format and performing a
subtraction, and finally a cubic spline with C1 continuity on the
extremes can be used to get

2x ≈ αx3 + βx2 + γx+ ζ,

α = 0.07944154167983575,

β = 0.2274112777602189,

γ = 0.6931471805599453,

ζ = 1.

4. APPLICATIONS

In this section we apply our approach to model two simple circuits,
namely a common collector voltage buffer and a dynamic diode
clipper, in order to show its suitability for simulating both static
and dynamic nonlinear systems.

4.1. Common collector voltage buffer

The common collector configuration is a basic BJT amplifier topol-
ogy, which is typically used as a voltage buffer. Figure 2 shows the
simplest such circuit.

Vin

V+

Vout

Re

Figure 2: Diagram of the common collector circuit.

By examining the emitter node, according to the Ebers-Moll
model and Ohm’s Law,

Is

eVin−Vout
VT − e

Vin−V+
VT +

e
Vin−Vout

VT − 1

βf

 =
Vout

Re
, (17)

where Is is the saturation current, VT is the thermal voltage, and
βf is the common-emitter current gain. This can be solved analyt-
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ically in terms of ω() as

Vout = VTω

(
Vin + Vx

VT
+ k

)
− Vx, (18)

Vx = IsRe

(
e

Vin−V+
VT +

1

βf

)
, (19)

k = log

(
IsRe

VT

(
1 +

1

βf

))
. (20)

Please note that k is constant and that the exponential in Eq.
(19) is directly and solely input-dependent, therefore needing to be
computed no matter the modelling method adopted. Moreover, the
closed-form solution above is exact, therefore the output error will
in practice only be affected by approximations of the ω() and the
exponential functions.

Figure 3 shows the output signals obtained by feeding the pro-
posed model implemented using different ω(x) approximations
with a 9 Vpp (Volts peak-to-peak) 440 Hz sine with 4.5 V offset.
We have set V+ = 9 V, VT = 26 mV, Is = 0.1 fA, βf = 100,
Re = 1 kΩ.

4.2. Diode clipper

The diode clipper is a circuit that prevents the output from exceed-
ing a predefined voltage level. Figure 4 shows a passive, dynamic
version of the circuit that also incorporates a first-order lowpass
filter. The behavior of the circuit can be fully described by [10]

dVout

dt
=
Vin − Vout

RC
− 2

Is
C

sinh

(
Vout

VT

)
, (21)

where Is is the saturation current and VT is the thermal voltage.
The derivative on the left side of the previous equation can be

discretized using any linear 1-step method (e.g., trapezoidal rule)
as

dVout[n] = B0Vout[n]+B1Vout[n−1]−A1dVout[n−1], (22)

where B0, B1, A1 are the coefficients obtained by applying the
chosen discretization method. We will also approximate the be-
havior of the two antiparallel diodes by assuming that, at any time,
the forward current of one is much higher than the reverse cur-
rent of the other [17, 19, 20], which corresponds to substituting
sinh(x) ≈ 1

2
sgn(x)

(
e|x| − 1

)
. Therefore, we obtain

B0Vout[n] +B1Vout[n− 1]−A1dVout[n− 1] =

Vin[n]− Vout[n]

RC
− Is
C

sgn (Vout[n])

(
e
|Vout[n]|

VT − 1

)
,

(23)

which can be analytically solved as

Vout[n] = w[n]− VTr[n]ω(k4r[n]w[n] + k5), (24)
w[n] = k2q[n] + k3r[n], (25)
r[n] = sign(q[n]), (26)
q[n] = k1Vin[n]− p[n− 1], (27)
p[n] = k6Vout[n]−A1p[n− 1], (28)
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Figure 3: Time domain waveforms (a) and absolute errors (b)
of the output from the proposed common collector voltage buffer
model implemented using the ω(x) approximations described in
Section 3.1. The input is a 9 Vpp 440 Hz sine with 4.5 V offset
sampled at 44.1 kHz.

Vin

R

C

Vout

Figure 4: Diagram of the diode clipper circuit.
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with

k1 =
1

CR
, (29)

k2 =
CR

B0CR+ 1
, (30)

k3 =
IsR

B0CR+ 1
, (31)

k4 =
1

VT
, (32)

k5 = log

(
IsR

(B0CR+ 1)VT

)
, (33)

k6 = B1 −A1B0. (34)

Figure 5 shows the block diagram of the digital implementa-
tion, and Figure 6 shows the output signals obtained by feeding the
proposed model implemented using differentω(x) approximations
and running at a sample rate of 44.1 kHz with the sum of two 2 Vpp

sines of frequencies 110 and 150 Hz. We have set VT = 26 mV,
Is = 0.1 fA, R = 2.2 kΩ, C = 10 nF.

Unlike the approaches outlined in [10], our method appears to
be stable when using common discretization methods for all inputs
of all amplitudes and using any of the approximations of ω() pre-
sented so far. Such a favorable outcome was not unexpected, since
the explicit solution of the implicit model, even if approximate and
in the discrete-time domain, necessarily relaxes the stiffness con-
straints of the problem. Indeed, similar results were obtained when
modelling related circuits by approximate solutions in [17, 19, 20].

The audio-rate computational load consists of 5 sums, 9 multi-
plications, 1 sign function, and 1 ω() evaluation per sample. While
we could not directly compare the computational requirements of
our algorithm to those presented in [10] for the same circuit, its
number of operations is so limited that it can be safely assumed
to be suitable for real-time usage on all but the worst performing
platforms.

5. CONCLUSIONS

This paper proposed the reformulation of expressions involving
the main branch of the Lambert W function in terms of the Wright
Omega function in the context of virtual analog modelling. Such
an approach has the advantage of eliminating the computation of
the exponential term typically found in the argument. Simple ap-
proximations of the Omega function have also been proposed that
are well suited in real-time contexts where lower accuracy can be
traded for lower computational load.

Such an approach was applied to model two example circuits,
namely a common collector voltage buffer and a diode clipper,
resulting in high quality and high performance digital implemen-
tations. In the latter case, the approximate solution of the implicit
model in the discrete-time domain also allowed to greatly improve
the stability of the algorithm w.r.t. previous models [10].

Implementations of the two applications examples (in MAT-
LAB) and of the approximations of ω(x), log(x), and ex (in C) are
available at http://dangelo.audio/dafx2019-omega.
html.
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Figure 6: Time domain waveforms (a) and absolute errors (b) of
the output from the proposed diode clipper model implemented us-
ing the ω(x) approximations described in Section 3.1. The input is
the sum of two 2 Vpp sines of frequencies 110 and 150 Hz sampled
at 44.1 kHz.

DAFX-7


	1  Introduction
	2  The Lambert W and Wright Omega functions
	2.1  The Lambert W function
	2.2  The Wright Omega function

	3  Approximations and computation
	3.1  Approximations of (x)
	3.2  Approximation of log(x)
	3.3  Approximation of ex

	4  Applications
	4.1  Common collector voltage buffer
	4.2  Diode clipper

	5  Conclusions
	6  References

